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INTRODUCTION

It is intended in this report to develop a method of kinematically

analyzing mechanical systems. A computer code that automatically gene-

rates a set of nonlinear equations describing the system and solves them,

is developed. To demonstrate the accuracy and effectiveness of the method

to be developed herein, five sample problems have been solved.

While all the sample problems solved are closed-loop mechanical

systems, the method described here need not be confined to closed loop

mechanical systems or to mechanical systems at all. In fact, the method

is applicable to any system whose motion is to be described, provided ade-

quate constraints can be incorporated into the code by the user. Examples

of such systems are electro-mechanical systems with relays, switches, etc.

Given the topology of a system, and the necessary inputs, the method

is capable of computing velocities, positions, accelerations and constraint

forces on the system.

Briefly, the most notable features of this method are:

(i) Complete generality in the derivation of the constraint equations and

computation of the generalized co-ordinates.

(ii) Use of sparse matrix subroutines to realize substantial savings in core

when problems of large magnitude are analyzed.

(iii) Versatility to incorporate nonstandard constraints into a problem, if

supplied by the user.

(iv) Ability to handle constraints, when they are supplied as a set of dis-

crete points, by constructing a third-order spline function through them.

(v) Ability to perform kineto-static analysis of a mechanical system if the

system is kinematically indeterminate.
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CAAPTER 1

1.1 Introduction:

The objective of this report is to formulate and implement a computer

code that is capable of performing kinematic analysis of constrained mechanical

systems. The need for such a code arose because most of the available codes

at present, for example IMP, ADAMS, and DADS, are cptimized

for transient dynamic analysis, rather than for kinematic analysis. Using

the above codes to perform kinematic analysis is tantamount to underutiliza-

tion of the code. Not surprisingly, therefore, the analysis process becomes

unnecessarily expensive and time consuming.

In this report, the DADS-2D* code [1] is modified to do kinematic

analysis. The discussion here is limited to two dimensional problems, but

the method is applicable to more general three dimensional systems, with few

modifications.

1.2 Statement of the problem:

Given kinematic or force inputs to a mechanical system of known topology,

one wishes to solve the equations of equilibrium to obtain an equilibrium

position of the system that is consistent with its constraints.

It is assumed that necessary matrix methods and other numerical algorithms

are available so they will not be discussed in detail here.

1.3 Literature Review:

Several general-purpose computer programs for dynamic and kinematic

analysis of mechanisms have been described in the literature. These programs,

which automatically formulate and integrate the equations of motion are based

on different but related analytical and numerical principles.

The major general-purpose programs available at the time of writing are

given in the following list (also see lists in Refs. 3, 4, and 8):

*2D implies a code that is capable of analyzing planar systems only.
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Also, refer to [4] for further details.

IMP (Integrated Mechanisms Program), described by Sheth and Uicker

[5];

DYMAC (Dynamics of Machinery), developed by Burton Paul, G. Hud

and A. Amin at the University of Pennsylvania [6];

DRAM (Dynamic Response of Articulated Machinery), described by Chace

and Smith [7];

MEDUSA (Machine Dynamics Universal System Analyzer) described by

Dix and Lehman [8];

ADAMS (Automated Dynamic Analysis of Mechanical Systems), developed

at the University of Michigan by Orlandea et al. is described in Orlandea

and Chace [9];

DADS-2D (Dynamic Analysis of Dynamic Systems), described by R.A.

Wehage, E.J. Haug, Jr., and R.C. Huang [1, 10];

DADS-3D (Dynamic Analysis of Dynamic Systems), described by R.C.

Huang and E.J. Haug, Jr. [1];

In addition to the above, there are special purpose programs that can

analyze only open loop systems. These include:

AAPD (Automated Assembly Program), a program for 3 dimensional

mechanisms, is described by Langrana and Bartel [11]. Only revolute and

spherical pairs are allowed.

UCIN, developed by Houston et al. at the University of Cincinnati,

is for strictly open loops [12].

Loop Closure Technique

Loop closure techniques essentially make use of the fact that the

product of transformation matrices around a closed loop is the identity

matrix. Consider, for instance, a simple 4-bar mechanism.
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Fig. 1.1

Consider any point of interest P, whose coordinates are to be determined

in the various frames of reference Q, n)' 1 2 2P2 ) , ( 3 n3), (E4 ' n4 ), the

axes of which are aligned along the length of the respective bodies at each

joint.

In reference frame (,i' nl point P has the coordinates

(P]l= [p11  (1.3.1)

(The subscripts on p and np denote the frame of reference).

In reference frame (E29 n2)

[P] 2 = (T 1 2 )[P 1] =(T12) p  (1.3.2)

where (T12 ) is the rotation matrix relating coordinates (l, r1l) and C 2' 2)"
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Similarly, in reference frame (3 n3)'

[P] 3  [p3] - (T23) j p2 1  (1.3.3)

L p3J Lp2J
where (T23 ) is the rotational matrix from reference frames 2 to 3.

In reference frame ( 4 ' 4)

[P4= FP4 (T34) p(1.3.4)

Lp4J 3

where (T3 4 ) is the rotational matrix from reference frames 3 to 4.

Finally,

IP]1  L [lJ C T 41) [P4J (1.3.5)

where (T4 1) is the rotational matrix from reference frames 4 to 1.

From equations (1.3.1) to (1.3.5), one has

[P]1 = (T41))(T34(T 2 3)(T1 2) [P]l (1.3.6)

Since P is chosen arbitrarily, (1.3.6) implies that

(T4 1 )(T 3 4 )(T 2 3 )(T 1 2 ) - [I] (1.3.7)

Considering the first variation of equation (1.3.7), an iterative technique

can be developed. Beginning with an initial estimate of the angles and positions

of each joint, a solution can be generated such that (1.3.7) holds for each

independent loop in the system.
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There are three basic disadvantages in using the loop closure:

(a) The method is applicable only if a closed loop exists. If there

are no closed loops, imaginary links and joints must be incorporated into

the system, without changing the kinematics of the system. This normally

leads to unnecessary complexities in the completion of loops and unnecessary

computations as far as the basic problem itself is concerned.

(b) The equations to be solved are highly nonlinear in nature and,

even though they are few in number, convergence might be rather slow.

(c) The program needs to have the capability of recognizing independent

loops in the mechanism and selecting the best set of loops, to optimize

computational errors.

Programs which use the loop closure technique include IMP, DRAM,

and DYMAC.

In contrast, programs like ADAMS, DADS-2D, and DADS-3D

utilize a sparse matrix approach, to be presented later,which leads to a

large number of loosely coupled equations that are to be solved.

These programs are equally efficient with closed and open loop mech-

anisms.

1.4 Organization of the Report:

Before dealing with the problem at hand, it is essential to know how

the DADS -2D code works, so that one may understand precisely what modi-

fications are necessary to use it effectively for kinematic analysis.

Chapter 2 is, therefore, utilized for explaining the fundamentals of

this approach. Only the most basic aspects will be discussed here. The

reader is referred to Ref. [11 for details of the method.

Chapter 3 deals with the proposed method of analysis of kinematically

determinate systems.
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Chapter 4 contains a description of the analysis procedure for force

driven systems.

Chapter 5 contains the implementation of the method, a discussion of

the computer code used, and briefly explains the computational flow in the

program.

In Chapter 6, numerical results for several problems, obtained by the

above method are discussed, conclusions are presented and promising

directionsfor future effort in this field are discussed.
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CHAPTER 2

An Overview of the DADS Program

2.1

Any rigid body undergoing planar motion can be uniquely fixed in

space by specifying three coordinates with respect to a Newtonian

reference frame. The simplest set of suitable coordinates is the Cartesian

X,Y coordinate of some point on the body e.g., the center of mass, with

respect to the reference frame, and a 0 coordinate that defines the

rotation of any line on the body with respect to its initial time, as shown

in Fig. 2.1. Attached to each body is another frame of reference (Oil, i n)

that is used for the purpose of locating fixed points on that body.

A mechanical system consists of several such rigid bodies connected

by means of joints and springs. Joints constrain the motion of the body

on which they are located and springs introduce internal forces into the

system.

Two types of joints, the revolute joint and the translational joint,

are included in the formulation [1]. The DADS-2D program (11, however, is

versatile enough to allow the user to insert non-standard joints such

as cams and other higher pair joints.

Since mathematical equations can be written for each constraint in the

system, the problem of dynamic analysis of a constrained mechanical system

reduces to solving the equations of motion corresponding to each generalized

coordinate, subject to constraints imposed on the motion by the joints.

Suppose that there are 'n' bodies in an arbitrary mechanical system and that

they are subjected to '2m' constraints. Corresponding to each body, there

are three degrees-of-freedom; so in total, there are 3n-generalized
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coordinates making up the system, denoted by q e R n . These coordinates are

not independeut, however, since they must satisfy the equations of constraint

O(q) - 0 (2.1.1)

2m
where 0 E R , and 'm' i the total number of joints in the system.

The equations of motion, derived from the variational form of Lagrange's

equations [14], can be written as

3n q_ ) 0 (2.1.2)

where Qi represent all conservative and non-conservative forces acting in

the qi direction.

The equations of motion (2.1.2) must hold for all time and for all

virtual displacements 6qi that are consistent with the constraints (2.1.1),

i.e.

3 qJ 6q = 0 (2.1.3)

By the Farkas Lemmas of optimization theory, there exist multipliers

~ 2m
A, A E R m , such that

3 /dI'3KE __ 2m a 6q =0 (2.1.4)d3 q i i --q i
i-l j -l

for all 6q,.

Thus, one obtains the equations
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d ( LK E 2 K E Q i 0 , 1 - , 3
Tj = o, iqli3n (2.1.5)

(q) = 0 j = 1,2m (2.1.6)

One therefore has a set of (3n + 2m) equations in (3n + 2m) variables

q and A. This is a coupled set of differential and algebraic equations

that must be solved simultaneously.

2.2 Integration of the Equations of Motion:

The equations of equilibrium are second-order, nonlinear, ordinary

differential equations, which can be expressed in the form

g( q, j, 4, X, t) - O,g c R3n (2.2.1)

Introducing a new variable u, such that one has

u - M 0 (2.2.2)

a- 0 (2.2.3)

The equations of motion can now be written as

g1(q.u, , a, t) - 0, g1 C R
6n (2.2.4)

which are first-order and more easily adaptable for computer-aided methods

of solution. The numerical algorithm used in the DADS-2D program is Gear's

Stiff Integration Algorithm. Essentially, this algorithm replaces the time

derivatives of the generalized coordinates at each time step by a polynomial

approximation, using the values of the variable and its derivative at the

present and previous R time steps. Once the replacement is done, the problem

simplifies to a system of algebraic equations, which is solved by the Newton-

Raphson iteration scheme [1].



2.3 Sparse Matrix Algebra:

One could theoretically solve the above problem by eliminating the

dependent generalized coordinates from the system of equations and reducing

the size of the system. This technique, however, leads to a greater degree

of coupling between the remaining equations, which also tend to become

very nonlinear. With te formulation presented in the preceding section, the

equations are very lo-sely -oupled because instead of solving a system of

(3n + 2m) equations, - ;7stem of (6n + 2m) equations is being solved. There-

fore, while perfuz-ming the Newton-Raphson iterations, one is confronted with

a large matrix in Vich most of the elements are zero. The locations of

the non-zero elements and their values can be easily determined, once the

topology of the system is known. As long as the topology does not change,

their locations also do not change.

Sparse matrix algorithms designed to take maximum benefit of the

sparsity of the matrices involved can be put to good use here. A substantial

saving in core storage is realized, since the values of the nonzero entries

and their row and column addresses can be easily stored in three vectors of

small dimension.

In the DADS-2D program [1], the Harwell library of sparse matrix

subroutines is used. They perform a symbolic LU factorization of the matrices

involved using a partial pivoting technique that maintains a high degree of

sparsity in the L and U matrices. The variables are then determined by a

simple forward and backward substitution procedure.

No effort is made here to explain the intricate computational details

involved in the DADS-code; rather the emphasis here is on the use of the solution

technique for the kinematic and equilibrium problem.

For a more detailed discussion, the reader is referred to references

1 and 2.
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2.4 Equations of Constraint:

Figure 2.2 depicts two adjacent bodies i and J. The origins of their

body fixed coordinate systems are located by the vectors Ri and R with

respect to the inertial frame of reference. Let an arbitrary point Pij

on body i be located by rij and pJi on body j be located by rji. These

points are, in turn, connected by a vector r . One can write a vectorp

equation beginning at the origin of the inertial reference frame and closing

there, to obtain the vector relationship:

R ri+ r r - ri -R -0 (2.4.1)

The constraint equations for a revolute joint are now obtained by

requiring that pij and pji coincide. Setting rp = 0 and writing Eq. 2.4.1 in

component form, one has

xi + ij cos i - 1ij sin i - xj - cji Cos j + nji sin j . 0 (2.4.2)

Yi +  i sin i + n ij cos i - Y - ji sin j - nji cos * - 0

For a translational joint shown in Figure 2.3, let points piJ and Pji

lie on some line parallel to the path of relative motion between two bodies.

In addition, let them be located such that rij and rji are perpendicular to

this line and of nonzero magnitude. Successively forming the dot product of

Eq. 2.4.1 with rij and ri and adding, one obtains the scalar equation

- rij " rji + ri +i - jij ii + rji

- 0 (2.4.3)

which reduces to

(ij cos i - nij sin i + &Ji cos -ji sin 0j)(x i - x )

+ (i sin i + ij cos i + Ji sin c.+ nJi Cos -J)(Yi - J

22 (2.4.4)
i Ji -Ji
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A second scalar equation is obtained by noting that rijx rj = 0. Expansion

of the cross product yields only a z component, which must be zero. This is

ij Cos 0 - nij sin 0i)( ji sin j + r)ji cos 01)

- (Cji cos j - nji sin 4j)( ij sin $i + nii cos = 0 (2.4.5)

Spring-Dampers: Since springs and dampers generally appear in

pairs, they are incorporated into a single set of equations. If one or the

other is absent, its effect is eliminated by setting that term to zero. The

equations for spring-damper force and torque are

-- = [ki.£Z. -to ) + V + F0  - R (2.4.6)

Tij ij I ij sij

Tij kr ij 0ij rO) + C r i . ij + T 0.j (2.4.7)

where

TF.. is the resultant force vector [Fi, Fi] in the spring-
1] x ij yij

damper

R is the vector CZij cos a, .ij sin a]T between points Sij andsij i ii

Sji of a spring-damper connection on the two bodies, as in

Fig. 2.4

Tij is the torque acting on two bodies at a revolute joint

kij and k are elastic spring coefficients
rij

cij and c are damping coefficientsrij

Z0i j  and 4O)j are the undeformed spring length and angular rotation

in the revolute

£iJ and )iJ are the deformed spring length and the angular rotation

in the revolute, and vij and $iJ are the time derivatives of

ij and 0iJ
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F0i j  and T are constant forces and torques applied along the

spring and around the revolute joint between two bodies

irom Figure 2.4, a vector expression similar to Eq. 2.4.1 is written as

R.+ + -r -R. =0
1 s.. 5.. s.. J

or in component form

Z.. C s x Cs 9 sin
sc s __ 

(248

ij
s sin ue t sin bno + tinj Cos

L xj j - s

= (xi - Cos r)+ sin ix + cs.
sij ij

Y si sin + Cos (2.4.8)

where a is the angle between R s and the inertial x axis. Equation 2.4.8

ij
is used to obtain Zij by noting that

z ij = NZ ij Cos a) 2+ (z ij sin a) 2] /2

= [(-xi i c os + n sin + x +  Cos
- s sij2+ (_ Yi - in si - i os

1s ji si + yi s ij si1s ijCo

Fy + sin j+ ] (2.4.9)

sjjIi 

nsjj

Substituting the left side of Eq. 2.4.8 into Eq. 2.4.6 the following force

expressions are obtained

F xi= -I ijl Cos a (2.4.10)

F "i IF ij I sin a (2.4.11)

where cos a and sin a are obtained by dividing Eq. 2.4.8 by Zi " Finally,

defining

v - Zij (2.4.12)

...... ... .. .. . .. ..... .... .. ... .. .. .. i. . . .i im



18

and transfering Ilj, Fxij , Fyij, and vjj to the right hand sides of Eqs.

2.4.9 and 2.4.12, one obtains equations in the form required by the numerical

integration algorithm.
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CHAPTER 3

Proposed Method of Analysis

There exist two broad categories of analysis, for which the methods

of solutions are radically different. These are:

(a) kinematically driven systems.

(b) force driven systems.

In a kinematically driven system, the input is a kinematic relationship

that, with the equations of constraint, specifies q. For instance, a

particular generalized coordinate specified as a function of time could

constitute a kinematic input. As time varies, the function changes its

value. Thus, the system assumes a new configuration. In such a system,

one assumes implicitly that the forces necessary to effect such an input

are available.

In such a system, as will be demonstrated later, the equations of

equilibrium and equations of constraint are completely decoupled and the

generalized coordinates can be computed directly from the constraint equations.

Once these have been computed, velocities, accelerations, and Lagrange

Multipliers can be computed algebraically.

In a force driven system, forces are used as inputs. Since the effect

of these forces on the generalized coordinates are not known a priori, the

equations of equilibrium are coupled with the constraint equations so that

they have to be solved simultaneously to yield the Lagrange Multipliers and

the state variables.

Analysis of Kinematically-Determined Systems

3.1 Solution for State Variables:

The analysis scheme presented here is valid for kinematically determinate

systems only. For a system with n bodies and m joints, one may write 2m
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equations of constraint from equations (2.4.2), (2.4.4), and (2.4.5).

There are, thus

f = 3n - 2m (3.1.1)

kinematic degrees of freedom, since the constraint equations are independent.

3n
Denoting the generalized coordinates by the vector q, q e R , one has the

vector of constraint equations

( R 2m

i(q)=Oi

In kinematic analysis, one may specify Z relationships among the

generalized coordinates, in terms of an input parameter a

Thus, one has X additional independent constraints of the form

2(q , a) - 0, t2 E RZ (3.1.2)

Since for a kinematically determinate system,

I + 2m = 3n

one has a situation in which the number of equations is exactly equal to

the number of variables. Quite often, the parameter a is scalar time.

Crank-Rocker Mechanism

Figure 3.1

As an illustration, consider the 4-bar crank-rocker mechanism shown

in Figure 3.10 that is used as the oscillating mechanism in fans. It consists
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of 4 bodies, 4 revolute joints and one input relationship

2 = 02(1) (3.1.3)

Body 1 is fixed to the Newtonian Reference Frame.

Number of generalized coordinates = 4 x 3 = 12

Number of constraints due to joints = 4 x 2 - 8

Number of constraints introduced by fixing body 1 = 3

Number of input relationships = i

The input relationship can be thought of as a constraint, since it

actually constrains the rotation of body 2. Thus, one has 12 variables and

12 constraints involving the variables. There is here one input parameter

that can be varied continuously to change the configuration of the system.
R3n

Letting the vector 0 E R represent the composite set of equations,

one can write

(q,a) = (3.1.4)

From the implicit function theorem of calculus, the matrix

aq kj 3n x 3n

is required to be non-singular for a solution to exist.

The set of 3n equations (3.1.4) is solved by the Newton Raphson for q,

i ionce a is fixed. Given an initial estimate q , it is required to find Aq

such that qi+l , qi + Aq is a better approximate solution of equation (3.1.4),

written now as

4 (qi+l a*) . 0 (3.1.5)

the asterisk being a reminder that the value of a is fixed.
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From th2 Taylor expansion of (3.1.5), upto first order, one has

Ii
(qi+l a*) = *(qi, ,) + 3 q = 0 (3.1.6)

or

( ( q *) Aqi = - O(qi*) ( .I.7)

i

This equation is linear in Aq and can be conveniently solved by using an

LU factorization scheme. Let

( (q , i)~-LU
Therefore,

(L)(U)Aqi = - (q , a*) (3.1.8)

Let

(U) Aq1 = V, v E R3n (3.1.9)

Then,

iLv - - 4(q , a*) (3.1.10)

The vector v can be easily determined by a forward substitution procedure.
i

Replacing the computed values for v in (3.1.9), Aq is computed by a back-
i+l

ward substitution and the new estimate q is found. This iteration
i

process is repeated until Aq satisfies the error tolerance specified.

3.2 Computation of Velocities:

The input parameter a may be related to time, and in some cases it may be time

itself. In such a case, the generalized velocity can be easily computed.

Differentiating the constraint equations (3.1.4) with respect to time,

one has

+ ( 0. (3.2.1)



23

3n
where (//3q) E R The first 2m terms of (ao/at) are always zero, since

joint constraints are scheleronomic.

The L and U factors of (P/3q) were determined while solving for q,

so all that needs to be done in computing q is forward and backward sub-

stitutions, with a different right hand side.

3.3 Computation of Accelerations:

Differentiating equation (3.2.1) with respect to time, with q = q(t)

known at each time, in a fixed grid, one obtains

a + + + * + -0 (3.3.1)

or

()q 2 + tI ++ "+1 a Aq~ + a2- 0 (3.3.2)
q~ -It~ a \q 2aat

Rearranging (3.3.2), one has

+q 2 + ~2 2 (333Dqat 2 ,aq 2
Once again, by a backward and forward substitution, q can be easily

determined using the L and U factors of (3 /Dq) which are already known.

3.4 Computation of the Lagrange Multipliers:

At this stage, the information available includes the present values of

q, q, and q. Rearranging (2.1.5), one has

2m xj + 2KE -d (KE) ,i-l.3

D q1 i a dt M

- . .. R3n (3.4.1)g(Q,q,q,q), g £ R341
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In matrix notation, (3.4.1) simplifies to

A~ ) - g(Q~q9;4q) (3.4.2)

Since (30/aq) = LU, one notes that

(0 T (OT = TLT (3.4.3)

Since L and U are known, LT and UT are also known and thus (3.4.2), which is

linear in X, can be solved to give the Lagrange Multipliers.

3.5 Analysis of Systems with Springs, Dampers and Actuator Forces:

Inclusion of springs, dampers and actuator forces in a kinematically

driven system does not pose any additional computational problems. Since

the values of the state variables q, q, and 4 are governed completely by

the constraint equations, they are obviously not affected by the inclusion

of springs and dampers. The Lagrange Multipliers, however, do change with

the inclusion of springs and actuators, since they introduce internal forces

into the system.

Since one already knows the state variables before computing the Lagrange

Multipliers, the forces due to springs, dampers, and actuators can be

computed for each analysis step. Referring specifically to (3.4.1), the

Qi' which originally might have consisted of constant forces, now become

functions of the state variables. Thus, only Q in the right hand side of

(3.4.1) needs to be modified to include spring-damper effects. The computa-

tional procedure need not change at all.
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CHAPTER 4

Equilibrium in Force Driven Systems

The analysis of forced driven systems essentially follcws the same

procedure as transient dynamic analysis. Since the effect of the force

inputs on the generalized coordinates cannot be determined without solving

the equilibrium equations, the system of constraint equations and equili-

brium equations are coupled and must be solved simultaneously.

However, there is one major difference in the procedures adopted for

transient dynamic analysis and for equilibrium of force driven kinematic

anlysis. The difference is that there are no differential equations to

solve in the equilibrium problem. In kinematic analysis, one assumes that

initial forces and velocity effects are negligible; hence, the equilibrium

equations are algebraic. This in itself may seem to be only an academic

difference, but the fact is that the numerical algorithm becomes much

more stable and efficient. This is because a system of simultaneous alge-

braic and differential equations tends to behave like a set of stiff differential

equations. Because of this, the integration algorithm is forced to take small

time steps to obtain convergence of the solution in each period of time.

Once the inertial and velocity effects are removed the apparent stiff-

ness disappears, because what remains is an algebraic nonlinear set of equations.

Springs and dampers must, however, be treated differently in this

formulation, as compared to a kinematically driven system. The effect of

springs and dampers are not known a priori, since the state variables and

Lagrange Multipliers are computed simultaneously. One possible way to

alleviate this problem is to define each spring force as a generalized

coordinate. Corresponding to each spring force, a 'constraint' equation
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defining it in terms of the other generalized coordinates, is added to the

Jacobian matrix.

In the method presented here, the equations of equilibrium are modified

to include the yet undetermined effects of the spring forces, and during the

Newton iterations all state variables and unknown multipliers are simul-

taneously computed.

Neglecting inertial and velocity effects from (2.1.5), one has the

equilibrium equations

j. Q i-l...3n (4.1.1)

the Qi representing all external forces as well as the internal forces

generated by springs and actuator forces. Since velocity effects are

neglected, dampers are not considered in this formulation.

Equations (4.1.1) must be solved in conjunction with the constraint

equations

4(q) - 0 (4.1.2)

Equation (4.1.1) is linear in the Lagrange multipliers, but both

equations (4.1.1) and (4.1.2) are nonlinear in the generalized coordinate

q, hence, an iterative technique is needed to obtain a solution of the

system of algebraic equations. Once again, the Newton-Raphson iteration

scheme is used. At each analysis step of this iteration scheme, one solves

a linearized version of equations (4.1.1) and (4.1.2). Linearizing these

equations, one obtains

(- [(q (,TA)- Q))iqix1i(4.1.3)
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and

3q /q~~=-(

Rewriting equations (4.1.3) and (4.1.4) in a compact matrix form, one

has

(2OT) T. A IJ

i)T - Q (4.1.5)q L q

-O(q 
)i

i-I- i i

q = q + Aq

Si+l=X i + AX / (4.1.6)

Using an initial estimate of the q's and A's, one solves equation (4.1.5)

to obtain the optimal increments in the variables and substitutes them into

(4.1.6) to generate the updated values. Iterations are continued by solving

(4.1.5) again and the whole process is repeated until AA and Aq satisfy

error tolerances.

In the actual computational method used in the program, the matrix of

equation (4.1.5) is not evaluated at each step. Several iterations are done

using the same matrix but with an updated right hand side, before the values

of the entries are changed.

While this may decrease the rate of convergence to some extent, the

savings in cost realized by not re-evaluating the matrix is large enough to

offset the expenses due to increased number of iterations.
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CHAPTER 5

Organization of the Computer Code

The DADS-2D code essentially consists of a set of subroutines,

each of which performs a specific function. The program is thus modularized

so as to make it as general as possible and, at the same time, make it

amenable to modifications.

As input to the program, the following details have to be supplied:

(a) System Parameters: amount of diagnostic information to be printed,

error tolerances, time of simulation, the a grid interval, and the system of

units to be used.

(b) Initial Estimates: of the x, y, and 0 coordinates of each body

fixed frame of reference with respect to the global frame of reference.

(c) Body Information: including mass, moment of inertia about the

center of mass, and constant forces and torques acting at the body center

of mass.

(d) Joint Information: which includes the bodies connected by each joint and

the coordinates of the joint relative to the body-fixed axes on the connected bodies.

(e) Spring Information: consisting of the two bodies to which each

spring is attached, attachment points on the two bodies, spring constants

and free lengths of the springs.

In addition, provision is made to specify curves as a discrete set

of points. The program then constructs a third-order spline through these

points to generate an analytical function.

The main computational flow of the program is shown in Figure (5.1.1)

and a detailed list of subroutines used is shown in Figure (5.1.2). A

detailed list of the various subroutines used and a brief explanation of

their functions is listed below.
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Figure 5.1.1 Print esultsi

(continued)
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SUBROUTINE FUNCTION

i) XECUTE Calculates dimensions of the main arrays

2) DADSPI Main driving subroutine. Controls the

entire program by calling the other sub-

routines

3) INDATA Secondary driving subroutine, calls all the

'SET' subroutines which read all the input

data

4) SETJT1, SETJT2, Read input data corresponding to revolute

SETJT3, SETJT4 joints (JTl), translational joint (JT2),

rev-rev joint (JT3), and rev-tran joint

(JT4), respectively

5) INDSET Secondary driving subroutine, calls all

INDX subroutines which generate the row

and column indices of the non-zero entries

in the Jacobian

6) INDXCl, INDXC2 Generate row and column pointers corres-

INDXC3, INDXC4 ponding to the constraints introduced by

Joints type 1,2,3, and 4, and also the

equations of motion

7) UINDST Generates row and column pointers for the

user supplied constraints

8) ASEMBL Corrects input data to satisfy the constraint

equations and equations of motion
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SUBROUTINE FUNCTION

9) MFEVAL Secondary driving subroutine, calls other

MFJ... subroutines which evaluate the non-

zero entries in the Jacobian matrix

10) MFJNT1, MFJNT2 Evaluate the non-zero entries introduced

MFJNT3, MFJNT4 by the constraints due to the joint types

1,2,3, and 4.

11) UMFEVL Evaluates non-zero entries due to user

supplied constraints

12) SOLVJM Secondary driving subroutine, calls the

sparse matrix subroutines, performs forward

and backward substitutions in the Newton

Raphson iterations

13) MCl9AD, MC19BD, MA13AD Sparse matrix subroutines

MC29AD, MC29BD, MC29CD

MA3OAD

14) DFASUB The subroutine which controls all numerical

computations, checks if error criteria are

satisfied, predicts values at next time step

by extrapolation techniques, prints the results

15) EQUIL Calculates the Q vector used for solving the

Lagrange multipliers

16) SPLINE {FUNCTION} Given a set of data points, the function

calculates a cubic spline through them. In

addition, it computes its first and second

derivatives
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CHAPTER 6

Example Problems

The purpose of this section is to demonstrate the feasibility

of the preceding method by solving example problems. Three kinematically

determinate systems are analyzed, each of increasing complexity, and

numerical results are shown. In addition, a simple force driven mechanism

was analyzed.

6.1 Sample Problem 1: Slider Crank

The slider crank has been chosen as the first example because it

incorporates all the standardized elements of the code. Body 1 is the fixed

body or 'earth'. Body 2 is the crank, body 3 is the coupler link and body

4 is the slider, which slides on a fixed guide on body 1. Crank member 2 is

given an input

42(t) --I + t/2.00

where t represents time. Attached to revolute joint RVLT2 is a torsional

spring TSl, and between bodies 4 and 1, a linear spring LSl. It is attempted

to compute the generalized coordinate and the Lagrange multipliers as functions

of time. The input data for the problem are shown in Table 6.1.1.

The simulation was done using an ITEL AS-8 computer. All computations

were done in double precision and the program was run using a WATFIV compiler.

The simulation period was 10.0 seconds and a solution was forced every 0.1

seconds. Compiling time was 3.43 seconds, execution time was 53.29 seconds,

and the total cost of the run was $18.52.



35

TS1

Slde Cak ecans

FiurT61.



36

Body Data:

Coordinates of Center of Mass

Body # z x y _ _Mass Il

1 0 0 0 0 15.0 20.0

2 14.14 5.0 5.0 7r/4 15.0 20.0

3 21.21 15.0 5.0 - /4 20.0 25.0

4 - 25.0 -5.0 0 5.0 2.0

Spring Data:

Spring # Spring Type Body i Body j to  60 k

1 Linear 4 1 10 - 10.5

2 Torsional 2 3 - 0.1 4.5

Joint Data:

Joint # Type Body i Body j XIJ YIJ XJI YJI

1 RVLT 1 2 0.0 0.0 - 7.071 0.0

2 RVLT 2 3 7.071 0.0 - 7.071 0.0

3 RVLT 3 4 14.14 0.0 0.0 0.0

4 TRAN 4 1 0.0 -i.0 0.0 - 6.0

Data for Slider-Crank Mechanism

Table 6.1.1
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"BcmX 02 BOO1 0
'EcT 02 9002 1
"IOMPHI 02 1003 2
; Jxcc 02 R004 3 4 7 8
'11CC 02 9005 5 6 9 A
FALPHA 02 RC06 B C F G
'IXTIL 02 R007 D E H I
1TVEL 02 O08 3 K N C
'ONIGI 02 B009 L PQ
:l VlX 03 9010 V V 9 S
'IEQY 03 B011 I Y T U
IQRPUI 03 BC12 z

Figure 6.1.2: Matrix of First Derivatives
of the Constraint Equation
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The rows of the matrix of Fig. 6.1.2 represent constraints as follows:

RO01, R002 and R003 are constraints obtained by fixing body 1.

R004 and R005 are constraints obtained due to RVLT1.

R006 and R007 are constraints obtained due to RVLT2.

R008 and R009 are constraints obtained due to RVLT3.

R010 and ROll are constraints obtained due to TRANi.

R012 is the kinematic constraint imposed on the rotation of the body 2.

Each of the columns represents a generalized coordinate.

Thus, element (8,7) : J in Fig. 6.1.2 represents the partial derivative

of R008 with respect to X3, i.e., the partial derivative of the first constraint

due to RVLT3, with respect to X3 .

6.2 Example Problem 2: Peaucellier Lipkin Exact Straight Line Mechanism

Figure 6.2.1 is a schematic diagram of the Peaucellier Lipkin Exact Straight

Line Mechanism. There are B bodies in this mechanism and 10 revolute joints.

The lengths of the links comply with the conditions:

AC = CB = BF = AF - a

DF = DC - b

EA = ED = C

The mechanism always satisfies the condition
2 -2 R2

(DA)(BD) = a 2 b 2 R

where R is an inversion constan.

Body 1 is ground. Crank link 2 rotates about the fixed axis E. The

motion of the crank link 2 is given as,

2 (t) - (t/loo.0o)

where t represents time. Point B of the mechanism translates along a vertical

line q-q which is always at a distance

h s

2(AE)

from point D.
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Body 3 Body 5

RVLT3 Body 1

Figure 6.2.1: Peaucellier Lipkin Mechanism
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BODY DATA

Body # Length Xcg Ycg cg Mass M. Inertia

1 5.0 0.0 0.0 0.0 0.0 0.0

2 5.0 -2.5 0.0 0.0 10.0 10.0

3 14.14 0.0 5.0 7r/4 10.0 10.0

4 14.14 0.0 -5.0 -ir/4 10.0 10.0

5 10.00 5.0 5.0 0.0 10.0 10.0

6 10.0 5.0 -5.0 0.0 10.0 10.0

7 14.14 15.0 0.0 -n/4 10.0 10.0

8 14.14 10.0 -5.0 r/4 10.0 10.0

JOINT DATA

Joint # Joint Type Body i Body j X1J YIJ XJI YJI

1 RVLT 1 2 0.0 0.0 2.50 0.0

2 RVLT 2 3 -2.5 0.0 -7.071 0.0

3 RVLT 2 4 -2.5 0.0 -7.071 0.0

4 RVLT 3 5 7.071 0.0 -5.00 0.00

5 RVLT 3 7 7.071 0.0 -14.142 0.00

6 RVLT 5 1 -5.00 0.00 5.00 0.00

7 RVLT 6 1 5.00 0.00 5.00 0.00

8 RVLT 4 6 7.071 0.00 -5.00 0.00

9 RVLT 4 8 7.071 0.00 -7.071 0.00

10 RVLT 7 8 0.00 0.00 7.071 0.00

TABLE 6.2.1: Data for Peaucellier Lipkin Mechanism
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At joints A, C, D, and F, three links are connected by a single revolute

joint. The simulation is done by specifying two revolute joints at the same

point in space, connecting the three bodies. Any revolute joint can be used

to connect any two bodies, as long as one avoids having the same two bodies

attached by the two revolute joints.

In the simulation model, the center of mass of link 7 is located at point

B. Thus, when crank link 2 turns, one would expect the x-coodinate of link 7

to remain constant. The simulation results indeed show the above to be true.

The input data for the problem is shown in Table 6.2.1. The simulation

period for this model was 10.0 seconds and a solution was forced every 0.1

seconds. Compiling time was 3.44 seconds and execution time was 25.25 seconds.

All computations were done in double precision using a WATFIV compiler and an

ITEL-AS-8 computer.

6.3 Example Problem 3: Link Gear Multiplier Mechanism

Figure 6.3.1 is a schematic diagram of a Link Gear Multiplier Mechanism. This

is a three degrees-of-freedom model. When three inputs are prescribed (through

bodies 3, 11 and 12), the output of link 6 is a product of the inputs.

There are 8 bodies, 1 revolute joint, and 10 translational joints in the

mechanism. Slotted link 4 turns about the fixed axis A. Links 2, 3, 11, and

12 slide on fixed guides in body 1, and have slots in them for connections with

bodies 5 and 12. When inputs Y 3 (t), yll(t), and x2 (t) are specified, the

system responds with the motion

x6(t) - Y 3(t) xl2(t/Yl11t)

Bodies 4 and 2 can turn with respect to the pin 5. Similarly, bodies 12

and 4 turn with respect to pin 8. To model this mechanism with standard elements,

fictitious bodies 6, 7, 9, and 10 have been introduced. Bodies 5 and 6, 6

and 7, 8 and 9, 9 and 10 are connected by revolute joints. Body 5 slides along
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I Figure 6.3.1: Link Gear Multiplier
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INPUT DATA

BODY DATA

Body # Length Xcg Ycg cg Mass M. Inertia

I - 0 0 0 10.00 20.00

2 - 10.00 2.00 0.00 10.00 20.00

3 - - 2.00 10.00 0.00 10.00 20.00

4 - 5.00 5.00 0.7854 10.00 20.00

5 - 10.00 10.00 0.00 10.00 20.00

6 - 10.00 10.00 0.7854 10.00 20.00

7 - 10.00 10.00 0.00 10.00 20.00

8 - 20.00 20.00 0.00 10.00 20.00

9 - 20.00 20.00 0.7854 10.00 20.00

10 - 20.00 20.00 0.00 10.00 20.00

11 - 5.00 20.00 0.00 10.00 20.00

12 - 20.00 30.00 0.00 10.00 20.00

JOINT DATA

Type Joint # Body I Body J XIJ YIJ XJI YJI

RVLT 1 1 4 0.0 0.0 -7.071 0.0

RVLT 2 5 6 0.0 0.0 0.0 0.0

RVLT 3 6 7 0.0 0.0 0.0 0.0

RVLT 4 8 9 0.0 0.0 0.0 0.0

RVLT 5 9 10 0.0 0.0 0.0 0.0

TRAN 6 1 2 0.0 1.8 0.0 -1.0

TRAN 7 1 3 -1.0 0.0 1.0 0.0

TRAN 8 1 11 2.5 0.0 -2.5 0.0

TRAN 9 1 12 0.0 25.0 0.0 -5.0

TRAN 10 3 5 0.0 - 1.0 0.0 -1.0

TRAN 11 4 6 0.0 1.0 0.0 1.0

TRAN 12 2 7 4.0 0.0 4.0 0.0

TRAN 13 11 8 0.0 - 1.0 0.0 -1.0

TRAN 14 4 9 0.0 1.0 0.0 1.0

TRAN 15 12 10 1.0 0.0 1.0 0.0

Data for Link Gear Multiplier

TABLE 6.3.1
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body 3, body 6 slides on body 4 and body 7 slides on body 2. Similarly,

body 8 slides on body 11, body 9 slides on body 4, and body 10 slides on

body 12.

The model used for simulation thus has 12 bodies, 5 revolute joints and

10 translational joints. The dimensions of the mechanism may be arbitrary,

provided the topological configuration does not change. The input data for

the problem are shown in Table 6.3.1.

Table 6.3.2 contains results of the simulation. Columns 2, 3, and 4

contain the values Y3, X12, and Yll, respectively. Using these values, the

expected value of X6 is computed and printed in column 5. Column 6 contains

the actual value of X6, as obtained from the simulation.

The simulation period for the job was 10.0 seconds, with a solution

being forced every 0.10 seconds. All computations were done using a WATFIV

compiler, on an ITEL AS-8 computer. Compilation time was 3.51 seconds, and

execution time 32.46 seconds. Total cost of the job was $20.79.

6.4 Example Problem 4: Force driven 4-bar linkage

Figure 6.4.1 is a schematic figure of a 4-bar linkage, which has one

degree-of-freedom. The mechanism is initially in a non-equilibrium position.

The problem at hand is to find the equilibrium position of the mechanism when

it is subject to its own body forces.

Pertinent input data are shown in Table 6.4.1. The values of the general-

ized coordinates and the Lagrange multipliers at equilibrium position are

computed.

It must be noted that for the force driven case, the program attempts

to find an equilibrium position if such a position exists at all. Thus,

there is no parameter like time, as in analysis of kinematically determinate

systems.
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BODY DATA

Body # Length Xcm Ycm 0cm Mass MI

1 100 0.0 -0004 0.0 0.0 0.0

2 100 8.682 -49.240 -1.3962 1.0 1.0

3 100 67.36 -98.480 0.0 1.0 1.0

4 100 108.682 -49.24 -1.3962 1.0 1.0

JOINT DATA

Joint # Joint Type Body I Body J X1J YIJ XJI YJI

1 RVLT 1 2 0.0 0.0 -50.0 0.0

2 RVT 2 3 50.0 0.0 -50.0 0.0

3 RVLT 3 4 50.0 0.0 -50.0 0.0

4 RVLT 4 1 50.0 0.0 -50.0 0.0

Data for Four-bar Linkage

Table 6.4.1
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RESULTS

Estimates obtained using €2 = const. - -1.3962 rads

Body # X Y (Rads)

1 10 - 1 4  0 0

2 8.68553 -49.2398 -1.3962

3 67.3711 -98.479 10-14

4 108.6855 -49.2398 1.7453

Estimates of Lagrange Multipliers

JT # Ax Xy

1 45.40 386.08

2 45.40 128.69

3 45.40 -128.69

4 45.40 -386.08

Constraint

0
02 - 10 " 0 8942.34

(Moment)

Execution time - 0.51 secs. in the ITEL AS-8 Computer

# of iterations - 2

Table 6.4.2
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FINAL RESULTS

Generalized Co-ordinations

Body # x Y O(Rads)

1 0 0 0

2 10- 14 -50.00 -1.5708

3 50.00 -100.00 0"17

4 100.00 - 50.00 1.5708

Lagrange Multipliers

Joint # Xx Ay

1 10- 13  386.08

2 10- 13 128.696

3 10- 1 3  -128.696

4 10- 1 3  -386.088

CPU Time - 1.02 secs

# of iterations - 2

Table 6.4.3
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Figure 6.4.1: Pour Bar Linkage
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The solution strategy for force driven mechanisms is slightly different

from what has been explained in the previous examples. The program has been

coded such that all Lagrange multipliers have zero initial estimates. During

subsequent iterations for closure of the mechanism, these estimates are

expected to reach the correct values.

The difficulty with this strategy is that very often the Jacobian

matrix of first derivatives does not have full row rank especially when all

Lagrange multipliers have zero initial estimates. To overcome the problem

caused by singularity of the matrix, the sparse matrix code fixes values for

K of the state variables arbitrarily where K is the nullity of the matrix,

and proceeds to solve for the remaining unknowns from the largest non-

singular submatrix available.

Thus, the configuration of the mechanism is changed considerably from

what was initially specified. Since the initial estimates of the dependent

variables have not changed, the input data is not a good estimate any more.

Thus while attempting loop closure, the program may need several iterations

and in some cases closure may not be attained at all. To offset this

computational difficulty, the following strategy is employed: If a mechanism

has f degrees-of-freedom, f coordinates are kept fixed by the code at their

initial estimates. Thus, one can now obtain the generalized coordinates by

solving the constraint equations. Once all the variables have been obtained,

Lagrange multipliers are computed.

The values computed above are read as initial estimates for the force

driven system. Since one has a reasonable estimate of the Lagrange multipliers

and other generalized coodinates, closure will be attained reasonably quickly.

This method may not work well for problems in which the initial estimates

are inaccurate, but for reasonably good initial estimates closure is guaranteed.
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CHAPTER 7

Conclusions

The basic attempt in this report is to formulate and code a general

purpose method for kinematically analyzing force driven and kinematically

driven mechanisms.

It was shown that for the kinematically driven systems constraint

equations can be used to evaluate the generalized coordinates. Successive

differentiation of the constraint equations yield velocities and accelerations.

The equations of equilibrium were shown to be uncoupled from the constraint

equations, and the unknown Lagrange multipliers can be computed even after

including inertial effects. In all cases, it was shown that the coefficient

matrix is the (DO/aq) matrix or its transpose, and hence, computations of

velocities, accelerations and Lagrange multipliers are not very expensive.

It was shown that for the force driven system, the equations of equili-

brium and the constraint equations were coupled. To avoid solving the dif-

ferential equations of motion, it was assumed that inertial effects were

negligible and thus this solution technique is applicable only to kinetostatic-

quasistatic systems.

Three example problems of varying complexity were solved, and the solution

strategy was shown to be feasible. Solution of velocities and accelerations

have not been included in the present code but can be done with very few

modifications in the main program.
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